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Instability of the separated shear layer in flow past a cylinder:
Forced excitation
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SUMMARY

The receptivity of the separated shear layer for Re= 300 flow past a cylinder is investigated by forced
excitation via an unsteady inflow. In order to isolate the shear layer instability, a numerical experiment is set
up that suppresses the primary wake instability. Computations are carried out for one half of the cylinder,
in two dimensions. The flow past half a cylinder with steady inflow is found to be stable for Re= 300.
However, an inlet flow with pulsatile perturbations, of amplitude 1% of the mean, results in the excitation
of the shear layer mode. The frequency of the perturbation of the inlet flow determines the frequency
associated with the shear layer vortices. For a certain range of forced frequencies the recirculation region
undergoes a low-frequency longitudinal contraction and expansion. An attempt is made to relate this
instability to a global mode of the wake determined from a linear stability analysis. Interestingly, this
phenomenon disappears when the outflow boundary of the computational domain is shifted sufficiently
downstream. This study demonstrates the need of carefully investigating the effect of the location of
outflow boundaries if the computational results indicate the presence of low-frequency fluctuations. The
effect of Re and amplitude of unsteadiness at the inlet are also presented. All computations have been
carried out using a stabilized finite element formulation of the incompressible flow equations. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow past a cylinder is associated with various instabilities [1, 2]. The primary instability
of the wake sets in at Re∼ 47 and eventually leads to the von Karman vortex shedding. The
Reynolds number is defined as Re= �UD/�, where � is the fluid density, U is the free-stream
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speed, D is the diameter of the cylinder and � is the coefficient of viscosity of the fluid. Beyond
Re∼ 190 the wake undergoes three-dimensional transitions [1]. At higher Re, instability of the
separated shear layer due to the Kelvin–Helmholtz mechanism is observed. Various values of the
critical Reynolds number (Rec), at which this instability is first observed, have been reported in
the literature. Bloor [3] observed the shear layer instability for Re larger than 1300. Gerrard [4]
observed the shear layer instability at Re= 350 and higher. Unal and Rockwell [5] reported that
they were unable to observe shear layer transition waves for Re<1900 using flow visualization.
Prasad and Williamson [6] found that the end conditions determine the Rec; it is ∼ 1200 for parallel
shedding conditions and significantly higher (∼ 2600) for the end conditions that result in oblique
shedding. They observed that the shear layer fluctuations are intermittent and become stronger with
increase in Re. They attributed the intermittent behaviour of these fluctuations to the streamwise
movement of the transition point in the shear layer. The observation of the transition waves for
Re∼ 350 by Gerrard [4] remains unexplained to this date.
The present work is an effort to investigate the possibility of observing the shear layer fluctuations

at low Re. At low Re, the shear layer transition waves are very weak and the flow is dominated
by the primary instability of the wake. A computational experiment is designed that results in
suppression of the primary wake instability but does not annihilate the instability of the separated
shear layer. This may, therefore, allow one to observe the shear layer vortices even at low Re.

In an earlier work [7] it was reported that a ‘slip’ splitter plate occupying a certain portion of
the centre-line downstream of the cylinder results in complete suppression of vortex shedding for
low Re. For Re= 100 a plate of length 2D (D is the diameter of the cylinder), whose leading
edge is located at 2.68D from the centre of the cylinder, is sufficient to completely suppress
the vortex shedding. The location and length of the slip plate required to suppress the shedding
are functions of the Reynolds number. It is found that for such low Re, similar suppression of
vortex shedding can also be achieved by replacing the slip splitter plate with a streamline, i.e. by
imposing a no-normal-flow across that part of the wake centre line. This, however, works only for
Re lower than ∼ 250. It was found [8] that, for the Re= 300 flow, even when the entire centre-line
downstream of the cylinder is forced to be a streamline, i.e. there is no-normal-flow across the
centreline, the wake instability develops and also excites the shear layer mode. It was also found
that the Re= 300 flow past half a cylinder, with symmetry conditions at the wake centre-line, is
stable. Further, it was found that when a secondary cylinder with one-fifth the diameter of the half
cylinder is placed close to it, the vortex shedding from the smaller cylinder leads to instability of
the separated shear layer of the half cylinder. This instability is periodic but intermittent in nature.
These results suggest that although the separated shear layer is linearly stable for the Re= 300
flow with a steady inflow, the shear layer mode can be excited by other external disturbances.

The objective of the present work is to further explore the possibility of exciting the shear layer
mode for the Re= 300 flow. The excitation is provided by a pulsatile perturbation of the inlet flow
at certain frequencies. It offers the possibility to answer a few questions: Can the forced oscillations
lead to the instability of the separated shear layer? What is the effect of varying the frequency
of the excitation? Is there an intrinsic frequency associated with the shear layer instability that is
independent of the excitation frequency? It is well known that the Re= 300 flow past a cylinder
is associated with three-dimensional instabilities. However, the objective of the present work is
restricted to studying the instability of the separated shear layer. This instability, along the span
of the cylinder, is known to be by and large two-dimensional [1, 9].

The incompressible flow equations, in the velocity pressure form, are solved via a stabilized
finite element method. The stabilized formulation is based on the SUPG (Streamline-Upwind/
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Petrov–Galerkin) and PSPG (Pressure-Stabilizing/Petrov–Galerkin) stabilization techniques [10].
Several element-level integrals are added to the Galerkin formulation to stabilize the computations
against spurious numerical oscillations. The basic Galerkin formulation is unstable for convection-
dominated flows and does not allow one to use equal-order-interpolation velocity–pressure ele-
ments. The time integration of the governing flow equations is done via an implicit procedure that
is second-order accurate. The time steps are chosen to adequately resolve the time scales in the
physical phenomena. The large-scale coupled non-linear equation systems resulting from the finite
element discretization of the governing equations are solved iteratively by employing the GMRES
(Generalized Minimal RESidual) procedure in conjunction with diagonal preconditioners. More
information on the formulation and its application to computing flows past cylinders can be found
in our earlier papers [11–14].

2. THE GOVERNING EQUATIONS

2.1. The incompressible flow equations

Let �⊂ Rnsd and (0, T ) be the spatial and temporal domains, respectively, where nsd is the number
of space dimensions, and let � denote the boundary of �. The spatial and temporal coordinates
are denoted by x and t . The Navier–Stokes equations governing incompressible fluid flow are

�

(
�u
�t

+ u · ∇∇∇u − f
)

− ∇∇∇ · r= 0 on �× (0, T ) (1)

∇∇∇ · u= 0 on �× (0, T ) (2)

Here �, u, f and r are the density, velocity, body force and the stress tensor, respectively. The
stress tensor is written as the sum of its isotropic and deviatoric parts:

r=−pI + T, T= 2�e(u), e(u) = 1
2 ((∇∇∇u) + (∇∇∇u)T) (3)

where p and � are the pressure and coefficient of dynamic viscosity, respectively.

2.2. Problem set up and boundary conditions

The computational domain is a rectangle with a half circular hole whose diameter lies along the
lower edge of the domain. A schematic of the problem set up is shown in Figure 1. The lateral
and the downstream boundaries are located at a distance of 50D from the centre of the cylinder.
The distance between the centre of the cylinder and the upstream boundary is 25D. The structure
of the mesh is same as used in one of our earlier studies [13]. It consists of two parts: a structured
grid close to the cylinder and an unstructured mesh in the remaining domain. The structured mesh
allows for having adequate control on the resolution of the flow in the boundary layer. It consists
of 100 elements in the circumferential direction. The radial thickness of the first layer of elements
on the cylinder boundary is 5× 10−4D. The unstructured mesh is generated via the Delaunay’s
triangulation technique. A view of the mesh is shown in Figure 2. This kind of a hybrid mesh is
useful in handling complex geometries by providing adequate resolution close to the body without
requiring the same distribution of grid points in the remaining domain. It leads to significant
saving of computational resources as opposed to computations on a structured mesh with similar
resolution close to the body.
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690 S. MITTAL

Figure 1. Uniform flow past a cylinder: problem description.

Figure 2. Flow past half cylinder: close-up views of the finite element mesh with 99 014
nodes and 197 164 triangular elements.

The following boundary conditions are applied. At the upstream boundary, the flow speed given
by the expression: Umean[1 + A sin(2�Ft)] is assigned. Here, Umean is the time-averaged speed
at the inlet, A is the normalized amplitude of the unsteadiness at inlet, F is the non-dimensional
frequency and t is the non-dimensional time. F and t have been non-dimensionalized with respect
to Umean and cylinder diameter, D. Another quantity that is useful is the Strouhal number. It
represents the vortex shedding frequency non-dimensionalized with respect to D and Umean. At
the downstream boundary, a Neumann-type boundary condition for the velocity is specified that
corresponds to zero stress vector. On the upper and lower boundaries a ‘slip-wall’ boundary
condition is employed, i.e. the component of velocity normal to and the component of stress
vector along this boundary are prescribed zero values. No-slip condition on the velocity is applied
on the cylinder surface.

3. THE FINITE ELEMENT FORMULATION

Consider a finite element discretization of � into subdomains �e, e= 1, 2, . . . , nel, where nel is
the number of elements. Based on this discretization, for velocity and pressure, we define the
finite element trial function spaces Sh

u and Sh
p, and weighting function spaces Vh

u and Vh
p.
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These function spaces are selected, by taking the Dirichlet boundary conditions into account, as
subsets of [H1h(�)]nsd and H1h(�), where H1h(�) is the finite-dimensional function space over
�. The stabilized finite element formulation of Equation (1) is written as follows: find uh ∈Sh

u
and ph ∈Sh

p such that ∀wh ∈Vh
u and qh ∈Vh

p∫
�
wh · �

(
�uh

�t
+ uh · ∇∇∇uh − f

)
d� +

∫
�
e(wh) : r(ph,uh) d�

+
∫

�
qh∇∇∇ · uh d� +

nel∑
e=1

∫
�e

1

�
(�SUPG�uh · ∇∇∇wh + �PSPG∇∇∇qh)

·
[
�

(
�uh

�t
+ uh · ∇∇∇uh − f

)
− ∇∇∇ · r(ph,uh)

]
d�e

+
nel∑
e=1

∫
�e

�LSIC∇∇∇ · wh�∇∇∇ · uh d�e =
∫

�h

wh · hh d� (4)

In the variational formulation given by Equation (4), the first three terms and the right-hand side
constitute the Galerkin formulation of the problem. It is well known that the Galerkin formulation
is unstable with respect to the advection operator as the cell Reynolds number (based on the
local flow velocity and mesh size) becomes large. Also, not all combinations of velocity and
pressure interpolations are admissible in the Galerkin formulation. Elements that do not satisfy
the Babuska–Brezzi condition lead to oscillatory solutions and, sometimes, no solution at all. To
give stability to the basic formulation, a series of element-level integrals are added. The first series
of element-level integrals are the SUPG and PSPG stabilization terms added to the variational
formulations [10]. The second series of element-level integrals are stabilization terms based on the
least squares of the divergence-free condition on the velocity field. Presently, same definition for
�PSPG and �SUPG is being used. It is given by the following relation based on the values of � for
the advection and diffusion limits:

�SUPG = �PSPG =
(

1

�2ADV
+ 1

�2DIF

)−1/2

(5)

where

�ADV = he

2‖uh‖ , �DIF = (he)2

12�
(6)

Here, he is the element length and various definitions have been used by researchers in the past.
Mittal [15] conducted a systematic numerical study to investigate the effect of high aspect ratio
elements on the performance of the finite element formulation for three commonly used definitions
of h. In this work, we use the definition based on the minimum edge length of an element. The
coefficient �LSIC is defined as

�LSIC =
(

1

�2ADV
+ 1

�2DIF

)−1/2

(7)
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where

�ADV = he‖uh‖
2

, �DIF = (he)2(‖uh‖)2
12�

(8)

Both stabilization terms are weighted residuals, and therefore maintain the consistency of the
formulation. Other details of the formulation can be found in Tezduyar et al. [10]. For a description
of alternative definitions of the stabilization coefficients the interested reader may refer to the article
by Tezduyar [16].

The time integration of the flow equations is carried out via the generalized trapezoidal algorithm.
The parameter � in the scheme is chosen to be 0.5. This results in second-order accuracy in
time. A time step of 0.025 is utilized for all the computations in this paper. The nonlinear
equation system resulting from the finite element discretization of the flow equations is solved
using the GMRES technique [17] in conjunction with diagonal preconditioners. The implicit
method used in the present work allows us to seek steady-state solutions by simply dropping
the unsteady terms from the governing equations and using � = 1 in the generalized trapezoidal
algorithm.

4. RESULTS

4.1. Steady flow

First, flow past half a cylinder with steady inflow is computed. These computations lead to
steady-state solutions for all Re�300 that were attempted. The solutions obtained by solving the
unsteady equations following an impulsive start and the ones by solving the steady-state equations
are found to be same. The top frame in Figure 3 shows the steady-state vorticity field for the
Re= 300 flow. Fornberg [18–20] has presented results for steady flow past a cylinder for Re
upto 800 in a series of papers. Recently, Gajjar and Azzam [21] have been able to obtain steady
flow solutions for Re as large as 3500. They have also presented a detailed review of the work
done on steady flow past bluff bodies. The results from the present computations are in good
agreement with published results [18–21]. For example, the steady-state drag coefficient from the
present computations for Re= 100 flow is 1.065 and the length of the wake bubble, measured
from the cylinder centre, is 6.67D. These values, reported by Fornberg [20] are 1.060 and 6.60D,
respectively. The values reported by Gajjar and Azzam [21], for the case when the lateral boundary
is located at 25D from the centre of the cylinder, are 1.08 and 6.65D, respectively. Fornberg [20]
and Gajjar and Azzam [21] have shown that, in general, as the lateral boundary is brought closer
to the cylinder the drag coefficient increases and the recirculation bubble length decreases. For the
Re= 300 flow the present computations result in the steady-state drag coefficient of 0.734 and a
recirculation bubble length of 20.49D. The values for the same, reported by Fornberg [20], are
0.726 and 20.40D, respectively. For more details on the steady-state flow past a cylinder and for
the performance of the present algorithm for unsteady flows, the interested reader is referred to
our earlier papers [8, 13, 14].
4.2. Linear stability analysis of the Re= 300 steady flow

A global linear stability analysis of the non-parallel steady flow is carried out via the procedure
described in our earlier papers [12, 22]. The unsteady solution, (u, p), is expressed as a combination
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Figure 3. Re= 300, A= 0.01 flow past half cylinder: vorticity fields for the fully developed flow for
various F . The top frame shows the steady-state flow for steady inflow. All the other frames show
the instantaneous field for the fully developed periodic flow with unsteady inflow for various F . The

colour map for the magnitude of the vorticity is also shown.

of the steady solution and the disturbance: u=U+u′ and p= P+ p′. Here, U and P represent the
steady-state solution whose stability is to be determined while u′ and p′ are the perturbation fields
of the velocity and pressure, respectively. We further assume that the disturbances are small and of
the form u′(x, t) = û(x)e�t and p′(x, t) = p̂(x)e�t . Substituting these forms of the perturbations in
the governing equations (Equations (1)–(2)) and subtracting from them, the equations for steady
flow, one obtains a generalized eigenvalue problem. � is the eigenvalue of the fluid system and
governs its stability. In general, � = �r + i�i where, �r and �i are the real and imaginary parts,
respectively. The steady-state solution (U, P) is associated with a global unstable mode if the
corresponding eigenvalue has a positive real part.

The linear stability analysis for the Re= 300 flow past a cylinder with steady inflow shows
that all the global modes associated with this flow are stable. The most unstable eigenmode
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Figure 4. Re= 300 flow past half cylinder with steady inflow: vorticity field for the real and imaginary
parts of the most unstable eigenmode.

is the one whose eigenvalue has the largest real part. The vorticity fields for the real and
imaginary parts of the most unstable eigenmode are shown in Figure 4. The growth rate, �r,
for this mode is −0.4377× 10−2 while the Strouhal number associated with it is ∼ 0.001. This
is a very low-frequency mode compared to the usual wake mode responsible for vortex shedding.
The eigenfunctions are normalized such that their Euclidean norm is unity.

To understand the dynamics associated with this mode, we construct a time-dependent flow by
adding the eigenmode to the steady-state solution, i.e. U(x) + û(x)e�t and P(x) + p̂(x)e�t . To
enhance the visual effect, the growth rate is made positive; the original value of �r is replaced with
a small but positive value: 6.0 × 10−4. The resulting solution for one cycle of the global mode is
shown in Figure 5. From the figure it is seen that this global mode associated with the wake of
the cylinder corresponds to the expansion and contraction of the recirculation bubble. Of course,
in the real flow it is stable for Re= 300. However, it may still be observed if it were to be excited
either by non-linear interactions with other global modes or via external inputs to the flow. To
the best of our knowledge this mode has never been reported before in the context of flow past a
cylinder.

4.3. Flow for unsteady inlet, A= 0.01, Re= 300

Figure 3 shows the instantaneous vorticity fields for the Re= 300 flow past half a cylinder with
an unsteady inlet velocity for various excitation frequencies. In all cases, the amplitude of the
unsteady component of the inlet flow speed is 1% of the time-averaged speed (A= 0.01). The
vorticity field for a steady inflow is also shown in the top frame of Figure 3. In all other cases, the
pictures shown are for the fully developed unsteady flow following an impulsive start. Throughout
this paper, the magnitude of a flow quantity is displayed in grey scale: darker the shade, larger is the
magnitude. White contour lines indicate a positive value while the black ones represent negative
value. The frames corresponding to F = 0.02 and 0.60 appear to be quite similar to that for the
steady-state flow. For all other excitation frequencies studied, the unsteadiness in the flow due to
the instability of the shear layer can be readily observed. The size of the shear layer vortices and
their spacing vary with the excitation frequency. While the vortices are large for low values of F ,
they are smaller and spaced closer to each other for higher values of F . Time histories of the flow
quantities for probes placed at various locations in the wake indicate that in each case the dom-
inant frequency of the unsteadiness corresponds to the excitation frequency. Figure 6 shows one
such set of time histories of the y component of velocity at a point located at (2.5D, 1.0D)

with respect to the centre of the cylinder. This shows that, at least at the low Re, the fre-
quency associated with the shear layer instability is determined largely by the excitation frequency.
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Figure 5. Re= 300 flow past half cylinder with steady inflow: vorticity field during one period of wake
oscillation simulated by taking a linear combination of the steady-state solution and the most unstable

eigenmode. The colour map for the vorticity field is the same as shown in Figure 3.

It appears that the separated shear layer is convectively unstable and the unsteadiness at the inlet
is able to excite these shear layer modes.

From Figure 6 it is seen that the flow excitations in the near wake first increase with increase
in F and then decrease with further increase in F . The maximum oscillation amplitude is realized
for F ∼ 0.25. This observation correlates well with the vorticity fields shown in Figure 3. For
low values of F (�0.25) the excitation affects the structure of the recirculation bubble quite
significantly. However, for larger values of F (�0.30) the size of the recirculation zone is quite
similar to that for the steady flow. To view the effect of F in more detail we subtract from the
unsteady flow the steady-state flow and show the resulting perturbation field of the vorticity in
Figure 7. The shear layer vortices can now be clearly observed for all values of F . The perturbations
in the vorticity field, with respect to the steady flow, are largest for F = 0.25. As is also seen from
Figure 6, the strength of the vortices reduces as F is increased beyond 0.25. At F = 0.60, the
vortices are very weak and confined to the very near wake of the cylinder. Consequently, the flow
for F = 0.60 is very similar to the flow with steady inflow.
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Figure 6. Re= 300, A= 0.01 flow past half cylinder with unsteady inflow: time histories
of the vertical velocity at a point located at (2.5D, 1.0D) with respect to the centre of the

cylinder, for various values of F .

4.3.1. A low-frequency wake instability. An interesting phenomenon is observed for F = 0.30 and
0.40. While the shear layer vortices are not too strong to alter the basic structure of the recirculation
bubble observed for the steady inflow, they are still strong enough not to get completely diffused
by the time they reach the far downstream end of the recirculation bubble. Consequently, they
are convected back towards the cylinder by the recirculating flow. This can be noticed from the
perturbations in the vorticity field shown in Figure 7. The interaction between the recirculating
bubble, the separated shear layer and the shear layer vortices leads to an additional instability
that involves a cyclic contraction and expansion of the recirculation bubble and an intermittent
intensification of the formation of shear layer vortices. This is reminiscent of the low-frequency
wake mode for the steady inflow that was described in the previous section (see Figures 4 and 5).
A possible reason for the excitation of this mode could be the non-linear interaction between the
wake mode and the shear layer vortices. Another observation that supports this possibility is the
low frequency associated with the instability in the two flows.

The time history of the vertical velocity at a point (15D, 2D) with respect to the centre of the
cylinder, for F = 0.40, is shown in Figure 8. Also shown in the same figure are the instantaneous
vorticity fields at certain time instants during one period of the contraction and expansion of the
recirculation bubble. The oscillation frequency of the recirculation bubble is very low: ∼ 0.0025.
However, it is larger than the frequency for the wake mode for the flow with steady inflow. The
difference between the two frequencies may be attributed to the non-linear effects that are known
to alter the frequencies predicted by linear theories. During the longitudinal contraction of the
recirculation bubble, stronger shear layer vortices are formed. This results in larger amplitude
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Figure 7. Re= 300, A= 0.01 flow past half cylinder with unsteady inflow: perturbations in the
vorticity field, with respect to the steady flow, for various F . The colour map is also shown.
There are nine equispaced contour lines between ±0.5. The white contour lines represent

positive values while the black ones represent negative values.

oscillations in the velocity field as is seen from the time history shown in Figure 8. This behaviour
is very similar to the one observed in our earlier work [8] where the separated shear layer for a
steady inflow is excited by a smaller secondary cylinder.

To investigate further this low-frequency instability, we carry out computations for various
locations of the outflow boundary, Ld. Figure 9 shows the time history of the vertical velocity
at a point (15D, 2D) with respect to the centre of the cylinder for F = 0.40 and with various
values of Ld. It is seen that although the shear layer instability is quite similar in all the cases, the
low-frequency instability becomes weaker as the outflow boundary moves downstream. For Ld in
excess of 150D the wake instability is completely eliminated. The solutions for values of Ld larger
than 150D are virtually identical. Figure 10 shows the instantaneous vorticity field computed using
a domain with Ld = 250D for the fully developed flow. The solution at all times appears very
similar to the one shown in the figure. The shear layer vortices are clearly observed. However,
wake instability corresponding to the streamwise pulsation of the recirculation zone is absent in
this solution. This observation points to the low-frequency instability being a numerical artefact
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Figure 8. Re= 300, F = 0.40 flow past half cylinder with unsteady inflow: time history of the vertical
velocity at a point located at (15D, 2D) with respect to the centre of the cylinder and the vorticity
fields at certain time instants during, approximately, one period of the contraction and expansion of the

recirculation bubble. The colour map for the vorticity field is the same as shown in Figure 3.

that disappears when the outflow boundary is sufficiently far away. This study clearly demonstrates
the need to be very careful in choosing the location of boundaries in such computations. It appears
that if the outflow boundary is not sufficiently far away from the bluff body, the low-frequency
wake instability can be excited. As expected, the computations for lower values of F (for example,
F = 0.2) do not show any significant differences for various locations of the outflow boundary.

4.4. Effect of the amplitude of unsteadiness at inlet; Re= 300, F = 0.2

The effect of A, amplitude of unsteadiness at the inlet, is studied for the Re= 300 and F = 0.2 flow.
Results for three values of A are presented. The vorticity fields for the fully developed unsteady
solutions are shown in Figure 11 while the time histories of the vertical velocity at (15D, 2D)
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Figure 9. Re= 300, F = 0.40 flow past half cylinder with unsteady inflow: time history of the
vertical velocity at a point located at (15D, 2D) with respect to the centre of the cylinder for

various locations of the outflow boundary.

Figure 10. Re= 300, F = 0.40 flow past half cylinder computed on a domain
with Ld = 250D: vorticity field for the fully developed unsteady flow. The colour

map for the vorticity field is the same as shown in Figure 3.

Figure 11. Re= 300, F = 0.20 flow past half cylinder: vorticity fields for the fully developed
unsteady flow for various values of A. The colour map for the magnitude of the vorticity is also shown.
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Figure 12. Re= 300, F = 0.20 flow past half cylinder: time histories of the vertical velocity at a point
located at (2.5D, 1.0D) with respect to the centre of the cylinder, for various values of A.

Figure 13. A= 0.01, F = 0.20 flow past half cylinder: vorticity fields for the fully developed unsteady
flow for various Re. The colour map for the magnitude of the vorticity is also shown.

are shown in Figure 12. Qualitatively, the behaviour in all the three cases is quite similar. The
strength of the shear layer vortices, as suggested by the amplitude of the vertical velocity at (15D,
2D) increases with A. The amplitude of the vertical velocity is 0.07814 for A= 0.001, 0.37411
for A= 0.005 and 0.30926 for A= 0.01. The variation of the amplitude, for these values of A, is
already deviating from being linear with A. It is expected that for larger values of A the response
of the flow might be quite different. The shear layer modes, as they become stronger, might excite
other modes of the flow.

4.5. Effect of Re; A= 0.01, F = 0.2

Figure 13 shows the vorticity fields for the fully developed unsteady solution for Re= 50, 100,
200 and 300 for A= 0.01 and F = 0.2. The time histories of the vertical velocity at (15D, 2D)
are shown in Figure 14. The shear layer vortices are not observed for Re= 50 and are very weak
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Figure 14. A= 0.01, F = 0.20 flow past half cylinder: time histories of the vertical velocity at a
point located at (2.5D, 1.0D) with respect to the centre of the cylinder, for various values of Re.

for Re= 100. The strength increases with increase in Re. Almost a linear increase in amplitude of
the disturbance is observed between Re= 100 and 300. In all the cases the time variation of the
frequency of shedding of the shear layer vortices is 0.2.

5. CONCLUSIONS

It is shown that, although the shear layer for Re= 300 flow past a cylinder with steady in-
flow is stable, it is possible to excite the shear layer mode at these low Re via external dis-
turbances in a certain range of frequencies. The frequency of the formation and shedding of
shear layer vortices is determined by the excitation frequency. For F = 0.2 and A= 0.01 shear
layer vortices can be observed at Re as low as 100. In certain cases, the shear layer instabil-
ity is accompanied by a low-frequency longitudinal oscillation of the recirculation bubble. This
low-frequency oscillation has been identified to be caused by a wake mode. The wake mode
has been obtained via a global linear stability analysis of the flow equations. However, the wake
instability disappears when the outflow boundary is located in excess of 150 diameters away
from the cylinder. This study demonstrates the need of carefully investigating the effect of lo-
cation of outflow boundaries if the computational results indicate the presence of low-frequency
fluctuations.
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